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Non-Newtonian Flow for Retention Control in
Field-Flow Fractionation

JOSEF JANCA¥* and J. CALVIN GIDDINGS

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF UTAH
SALT LAKE CITY, UTAH 84112

Abstract

Retention in field-flow fractionation (FFF) can be altered and controlled by the
introduction of different kinds of velocity profiles in the FFF channel. Here we
propose the use of non-Newtonian fluid flow to manipulate retention in FFF. The
flexible, three parameter Ellis equation, describing non-Newtonian behavior, is used
to derive the dependence of retention ratio R on the dimensionless mean solute layer
thickness A. Numerical calculations show the way in which changes in the
parameters of the Ellis equation change the velocity profile in the channel and
therefore the shape of the R versus A functions.

INTRODUCTION

Relative retention and separation in field-flow fractionation (FFF) can be
controlled by varying the nature and strength of the applied field, or by
controlling the flow profile in the FFF channel. Of the two choices, the
applied field can be manipulated more conveniently. The utilization of wide
ranging field conditions has therefore served as a major basis for developing
FFF systems (I-4). However, greater versatility is expected if field varia-
tions can be combined with flow profile control. An initial step in this
direction was recently developed in which thermogravitational flow was
superimposed in various proportions on normal forced flow to yield a wide
range of flow profiles (5). In this article we present a second approach in
which flow profile control is to be gained by the utilization of non-Newtonian
carrier fluids.

The separation of solute molecules or particles in a field-flow fractionation
channel is due to the simultaneous influence or coupling of the different
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velocity vectors in the carrier stream in the channel and the external field
acting over the width of the channel (6). The external field induces a
migration of solute molecules across the channel at mean velocity U.
Molecular diffusion, characterized by diffusion coefficient D, works against
the field-induced motion as solute piles up and forms a steep concentration
gradient against the far channel wall. On reaching steady-state conditions,
each different solute species is concentrated in a layer characterized by the
mean thickness /, in which (7)

I=D/U (1)

The value of / is different for each molecular species, depending on the ratio
of the diffusion coefficient D to the field-induced mean velocity of migration
U, the latter being proportional to the field strength. The distribution of
molecular species across the channel depends on / according to the
exponential equation (8)

c(x) = ¢y exp (—x/1) (2)

where c(x) is the concentration of the solute at distance x from the wall where
accumulation takes place, and ¢; is the concentration of the solute at that
wall. The external field, which induces the migration of solute toward the
wall, can be of various types including thermal (9, 10), electrical (11),
sedimentation (/2), flow (/3), and concentration (/4). The present analysis
is intended to be applicable to all of these external fields.

Different solute species are swept along by the flow at different average
velocities by virtue of their unequal distribution over the velocity profile. The
averaging of solute velocity over the profile is carried out by the general
equation (15)

_ <c(x)-v(x)>
<c(x)> - <w(x)>

(3)

where R is the retention ratio, #(x) is the velocity of the solvent streamline at
a distance x from the accumulation wall, and <c(x)> and <u(x)> are,
respectively, the mean values of solute concentration and velocity over the
channel cross section.

Equation (3) can be used to demonstrate that retention is controlled by the
strength of the applied field. The field strength determines solute drift
velocity U and, consequently, / and c¢(x) by virtue of Egs. (1) and (2).
Equation (3) shows, even more directly, that retention can be altered by
changes in the flow profile »(x). For normal parabolic flow, Eq. (3) then
provides the well-known retention equation (15)

R = 6A[coth (1/2X) — 2A] (4)



13:48 25 January 2011

Downl oaded At:

RETENTION CONTROL IN FIELD-FLOW FRACTIONATION 807

where A is the dimensionless ratio //w, w being the thickness of the FFF
channel.

A disturbance of the parabolic velocity profile can be a secondary result of
the applied field, as in the case of thermal FFF, where the temperature
gradient across the channel produces a viscosity gradient and thus disturbs
the parabolic flow. A different example is provided by thermogravitational
FFF where the velocity profile is altered by convection in the channel (5).

Departures from the parabolic velocity profile may be used to control
retention, given appropriate experimental conditions (§). Some theoretical
relationships dealing with retention and peak broadening when the velocity
profile is not parabolic and not symmetric have been given recently (16). A
general polynomial was used to describe the nonparabolic velocity profile in
the channel. The polynomial form may be used for most velocity profiles not
symmetric with respect to the central plane of the channel and, in addition,
can also be used for the symmetric parabolic velocity profile.

In this paper we evaluate the possibility of using non-Newtonian liquids to
alter the velocity profile in FFF. In such a system, one could, if needed,
program the parameters of the non-Newtonian carrier to change the shape of
the velocity profile during an FFF separation.

THEORY

Most simple fluids flowing at moderate rates obey Newton’s law in which
the velocity gradient dv(x)/dx is proportional to the shear stress 7,:

_du(x) s
=T (3)
The viscosity n is independent of shear stress for such Newtonian fluids. For
non-Newtonian liquids, viscosity varies with the shear stress. The change in
n with 7, over the channel cross section alters the shape of the velocity profile
in the channel, and parabolic flow is no longer realized.

Among various models describing velocity profiles for non-Newtonian
flow, the Ostwald—de-Waele power law and the Ellis model (/7) are the most
convenient for practical calculations because the necessary parameters are
available for many non-Newtonian liquids. The Ellis equation

dv(x)
dx

= (¢ + 1| .| D1, (6)

contains three adjustable parameters, ¢, ¢, and a. If @ > 1, the model
yields results approaching Newton’s law for small values of the shear stress
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7. Newton’s law is also fulfilled when ¢, = 0 or « = 1. When ¢, = 0, the
Ellis equation reduces to the simple power law

d
l;();x)z ¢l, T,\"a_lfx (7)

The flexibility of the Ellis equation is demonstrated by its easy conversion to
Newtonian flow and the commonly used power law of Eq. (7). For this
reason we use the Ellis equation for our theoretical development.

The shear stress 7, in a parallel plate channel is given simply by

AP
TX=T(%’— x) (8)

where AP is the pressure drop along the length of the channel. For simplicity
we define the pressure drop over a unit length of the channel by

m= AP/L (9)
and a new dimensionless coordinate by
p=x/w (10)
Substituting Egs. (9) and (10) into (8), we find
T, = mw(; = p) (11)

When this is substituted into Eq. (6) and integrated, an expression can be
found for the velocity profile #(x). For this purpose we use the boundary
conditions #(x) = O for p = 0 and 1. Integration then yields

Bomw? D17 [y

- l_1_22+_____a+11_1_2 atl 12

(o) = 2 = (1= 200 + 2 (F)n = (1= 2001 12)

The mean value of this velocity across the channel may be calculated from
1 1

<utpy>= [wiordps [ do (13)

Substituting Eq. (12) into Eq. (13), integrating, and rearranging, we obtain
oW’ | o (y,

<wv(p)> = + et 1
v(p) 12 o+ 2\2 (14)

When we express the concentration distribution in the channel in terms of
the new coordinate system p = x/w, Eq. (2) assumes the form

c(p) = ¢; exp (—p/\) (15)
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where ¢, is concentration at the accumulation wall of the channel, p = 0. The
mean concentration across the channel can be calculated from

1
co[ exp (—p/A) dp

<c(p)> = (16)
I
1
Integration and rearrangement of Eq. (16) give
<e(p)> = coA[l — exp (—1/A)] (17)

The desired equation for retention ratio R is obtained by substitution of
Eqgs. (12),(14), (15), and (17) into Eq. (3), followed by integration. We have

R =

2¢A[exp (—1/A)(1+20N)+ 1 =2A]+2¢,a!A(mw/2)* "' [—exp (1/A\)4,~ B, — C}]
P, B (mey
[1—exp( 1/)\)][3+a+2(2)' ]

where A4, B,, and C can be expressed as follows when «a is an integer:

(18)

_ a+l (2)\)'1—!
A"_Ei(aﬂ—n)! (1)
_ a+1 o (2}\)n—1
B, = Xl 1)(a+1—n)! (20)
and
C = exp (—1/2X\)(2N)°[1 + (—1)7] (21)

We noted above that when ¢, = 0, the velocity profile becomes parabolic
(Newtonian), in which case Eq. (18) reduces to Eq. (4). The velocity profile
also becomes Newtonian when a = 1, and R is given in this case also by Eq.
4).

A different facet of the R vs A relationship concerns the limiting case
when A approaches zero. Equation (18) may be simplified to
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a—1

20\ + 260, alA (1’2-W>
R= (22)

@+ﬂ_<ﬂv>‘”
3 a+2\2

For Newtonian liquids, when ¢; = 0 (or @ = 1), Eq. (22) becomes simply

R = 6\ (23)

which is the limiting case, as A tends to zero, of Eq. (4). When a non-
Newtonian liquid is described by the power law, Eq. (22) reduces to

R =2a'(a + 2)A (24)
which reduces to Eq. {(23) for & = 1, as expected.

RESULTS AND DISCUSSION

Velocity profiles calculated from Eqgs. (12) and (14) are shown in Fig. 1
as a plot of dimensionless coordinate p versus v/<<¢>, where v and <v>> are,
respectively, the flow velocity at a particular value of p and the average
velocity in the channel. The curves in Fig. 1 show the effect of changing the
value of & with all other parameters held constant. The range shown for
a (1 < a < 9) covers the likely range of practical applications. In the case
when a = 1, we have Newtonian behavior.

V/<v>

FiG. 1. Normalized velocity profiles for non-Newtonian flow in an FFF channel for different
values of a. Input parameters are ¢ = 0 and ¢»; = 1.
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A

Fic. 2. Dependence of R on A(0 < X\ < 1) for different values of a, calculated using Eq. (18).
Input parameters are those for Fig. 1.

Figures 2 through S are all plots of retention ratio R versus the dimension-
less layer thickness A, and show the effects of varying different parameters in
Eq. (18). Figure 2 shows the effect of changing «. Because ¢y = O for all
cases, Eq. (6) reduces to the power law, Eq. (7), and « is the only factor
influencing R vs \. Values of « are in the same range as for Fig. 1,1 < a <9,
We see from Fig. 2 that the R vs A dependence is most pronounced when 0 <
A < 0.5. This region is expanded in Fig. 3.

10

0.8
R
0.6

0.4

0.2

0 1

I 1

1 1 1
0 0.08 0.16 0.24 032 0.40 048

A

FiG. 3. Dependence of R on A (0 < A < 0.5) for different values of a. This figure is an enlarged
portion of Fig. 2 and has the same input parameters as Fig. 1.
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Figures 2 and 3 show that R increases most steeply with A for large «
values. This can be explained in terms of the velocity profiles in Fig. 1. For
large « values the velocity gradient is steep near the walls. A solute zone of a
given thickness (A value) therefore is swept along more rapidly the larger a,
yielding a higher R value. In the limiting case of vanishingly small A values,
the initial slope of the R versus A curve is shown by Eq. (24) to be
2al(a + 2), which, of course, increases rapidly with a.

We must also consider the influence of the other parameters of Eq. (18) on
R vs A curves. The ratio of ¢, to ¢, plays an important role and describes the
relative contributions of parabolic and nonparabolic velocity factors to the
resultant profile. The effects of changing ¢, and ¢, with « held constant are
shown in Figs. 4 (& = 3) and 5 (a = 5). The boundary curves, ¢/, = =
and 0, correspond to the Newtonian parabolic velocity profile in the first case
and to the power law in the second. Inside these bounding limits the curves
vary continuously, demonstrating that by choosing conditions corresponding
to different values for the ¢y/¢, ratio, we can continuously vary R vs A
functions. [We note that ¢y/¢, is not dimensioniess but that ¢/, (mw)* ™!

08 ' ' ' '

0.7+ 4

R $,/% =0
/% ol

0sF oS -

g N

I

05

0.4 T

0.3 B

0.2 -

0.1~ N

Q 1 1 i i
0 0.0/ 0.08 0.12 0.16 020

A

Fi1G. 4. Effect of different ¢g/¢; ratios on R vs A functions, calculated using Eq. (18). Constant
input parameters are « = 3, 7 =2, w= 1.
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FiG. 5. Effect of different ¢pg/¢p; ratios on R vs A functions. All parameters have identical
values to those of Fig. 4 except a = §.

is. Since mw is held constant at 2 for the two plots, the above dimensionless
group assumes values of ¢y/4¢, in Fig. 4 and ¢,/16¢, in Fig. 5.]

Lastly, to study the effect of changing 7 and w on the R vs A functions, we
note that in Eq. (18) these two parameters always appear together as the
product mw. In view of the above dimensional arguments, Figs. 4 and 5 can
be construed as reflecting changes in mw as much as in ¢y/¢,, since, in
reality, it is the dimensionless group ¢/¢,(mw)*"! undergoing variation.
Following this approach, the curves in Fig. 4 represent 7w =
2(po/P1)2/y'"?, where ¥ is the “fixed” ¢y/¢, ratio shown in the figure; in
Fig. 5 the corresponding expression is mw = 2(gx/¢,)"*/y"*. Thus Figs. 4
and 5 both show the trend, going left to right in each, of variations in 7w from
infinity to zero. As expected, as 7w is reduced we get the same trend as when
¢/, increases. Both trends represent a tendency toward normal parabolic
flow.

Steric FFF (I8) provides a special and possibly important case of the use
of non-Newtonian behavior. In steric FFF, particles accumulate at the wall
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or at a fixed distance from the wall, in place of the exponential distribution
across the width of the channel represented for normal FFF systems by Eq.
(2). A first approximation in the steric case gives

g = 2alv) (25)
<u(p)>

where a is the particle radius. Using A, = a/w and substituting Eqs. (12) and
(14) into Eq. (25) yields

I (1 = Ao + —2—(mw/2)7 1 = | 1 — 27, | **']
a+ 1
R = (26)
@ __¢_l.__ a—1
3 P 2™/2

which for the Newtonian fluid (¢, = 0) is reduced to the recognized
expression (8)

R=6A(1 — \) (27)

which is an approximation of Eq. (4).

In this paper we have not attempted the detailed ““engineering” of non-
Newtonian FFF systems. This would involve attempting to find liquid
carriers with appropriate non-Newtonian parameters. The non-Newtonian
properties of certain one-phase systems may be changed radically by varying
the concentration, or molecular weight, or nature of the dissolved polymer or
biopolymer species (/9). Other possibilities are the use of two-phase or
multiphase systems such as suspensions, or mixtures of two or more
immiscible liquids as carriers. Experimental complications such as the
stabilization of these systems must, of course, be solved. However, it might
be difficult to reach an adequate level of non-Newtonian behavior at the low
flow velocities needed for high resolution FFF separations. Steric FFF
might provide an interesting application in that case because higher flow
velocities can be used, although not without causing serious departures from
Eqgs. (25) through (27).

The approach discussed above involves an intentional, controlled exploita-
tion of the properties of non-Newtonian carrier fluids in FFF. A local and
less controllable aspect, which should be taken into account in normal FFF
separations using Newtonian carrier fluids, is the possible non-Newtonian
behavior of the solute material being separated. (Local viscosity changes due
to solute might be important even in the absence of non-Newtonian
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behavior.) This may be anticipated in cases when high molecular weight
species are separated. Factors such as concentration, molecular weight, and
the shape and the flexibility of the separated species will affect the
occurrence of non-Newtonian flow. These situations will complicate the
shape of the velocity profile in the solute zone and thus disturb normal
retention patterns. More work is needed to elucidate this phenomenon.
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